
erpentine
Artificial Intelligence Association

Technical report

Angry Birds Level Generation

Wolf van der Hert
Bram Grooten
Thomas Molier

Jelle van Kerkvoorde
Tunahan Sari

September 2020

Abstract

TeamAmaru1, consisting of fivemembers fromSerpentine, participated in the 2020Angry Birds Level
Generation competition. Serpentine is a student team of the Eindhoven University of Technology
which competes inAI programmingcontests. In this competition,which is part of the IEEEConference
onGames, teams create a bot that can generate levels for the Angry Birds video game. The generated
levels had tobe: enjoyable, aesthetically pleasing, and challenging. Therewas aprize for eachof these
three criteria. Team Amaru programmed a bot that has a small data set of existing structures such as
a windmill, a pyramid, or a ship. The bot selected a few of these structures at random to generate
levels. With this Amaru finished in first place in the challenge category!

Figure 1: An Angry Birds level created by the Amaru-Generator.

1Contact us at: amaru2020@serpentineai.nl

Contents

Abstract 1

1 Introduction 3

2 Strategy 3
2.1 Baseline . 3
2.2 Universal structures . 3
2.3 Pigs . 4
2.4 Birds . 4

3 Implementation 4

4 Results 7

5 Discussion 7

6 Conclusion 8

Acknowledgements 8

References 8

Appendix 8

2

1 Introduction

From June to August, 2020, five members of Student Team Serpentine competed in the 5th Angry
Birds Level Generation competition [1], part of the IEEE Conference on Games [2]. For this competi-
tion, the teamwas asked todesign an algorithmwhich could generate levels for theAngry Birds video
game. After a quick few weeks, the team submitted their generator on the 7th of August, 2020. Out
of the five competing teams, Serpentine Team Amaru won the first price for the Challenge section.
The code can be found on the GitHub page of team Serpentine [4].
In this report, the strategies are first discussed in section 2, after which the implementations of these
are discussed in section 3. In section 4, the results of the competition are presented and in sections
5 and 6, the project is discussed and a conclusion is given. The team is named after a flying snake,
called Amaru.

2 Strategy

The strategy consists of a fewkey features. Theparameter file is used as the inputbyproviding instruc-
tions to the program. The information about the number of levels should be created, the number of
pigs should be spread along with these levels and the materials used for the structures used in the
levels and other details about the level design are provided here. On top of it, hard-coded structures
are provided as explained in the implementation. The rest is planned to be done by the algorithms
based on the rules that are set by our developers. In Figure 2 some examples are given to support
the following information.

2.1 Baseline

The baseline code that was provided by the organisation was already capable of generating random
levels. This baseline algorithm would first generate structures on the ground. When ground struc-
tures were constructed, the algorithm would try to fit one to three platforms based on their widths
and heights, as explained in the following algorithms. Random structures were constructed onto the
platforms using the same algorithm as on ground level. Pigs and TNT would be placed by replacing
the blocks based on the algorithm that is given in implementation. In this paper, the given baseline
algorithm of constructing random structures replaced with custom hard-coded universal structures.
The implementation explains how the code is replaced with what intention. The idea of changing
the baseline code was to create level designs that are not necessarily random but are rather looking
aesthetically pleasing.

2.2 Universal structures

Universal structures form the basis of the strategy and should comply with a few requirements. First
of all, universal structures should be diverse. Diversity in this context means that the generated lev-
els will be looking different every time one is generated while it is aesthetically pleasing at the same
time.
When all the materials (Wood, Stone, Ice) of a certain block type are restricted, and if all the universal
structures are based on the specified block type, then no level can be generated. However, if a rel-
atively large database of diverse universal structures is created, then no matter what restrictions are
imposed on the code, the generator will always be able to find a suitable alternative structure.

Another requirement for a universal structures is being able to get ’scaled’: Certain structures can
be generated at different sizes. These different sizes create variety in the levels, while maintaining
efficiency.

3

2.3 Pigs

Pigs are generated based on a few variables. One of the variables is the amount of pigs distributed
over a number of levels, provided by the parameter file, and another variable is the generated struc-
ture itself. Based on these variables the amount of pigs used in a certain level can be generated.

2.4 Birds

The amount of birds and their types are determined based on the generated level and the number
of pigs. Firstly, the different types of bird are specialised in tackling different kinds of blocks. As a
brief introduction, yellow birds are great against wood, blue birds excel against ice and black birds
are especially effective against stone blocks. Therefore, the type of bird the level comes withmatters.
The amount of birds is determined based on the difficulty of the level and the amount of pigs placed
in that specific level.

Figure 2: Some structures from the database; a bird sequence.

3 Implementation

In this section, the algorithms that are developed based on the team’s strategies are explained. A
level is generated in five different steps, as follows: Design the level, merge several different designs,
place the pigs, provide different types of birds based on the type of structures and finalise it with the
right amount of birds based on the number of pigs.

Level designs are made based on the level-design algorithm where the algorithm takes individually
crafted structures that are made based on the preliminary designs that are made by our team, see
Figure 3. Thus, there is no algorithm available for the stated purpose since the structures are made
individually. However, it is crucial to understand themathematics behind the level designs since plac-
ing structures in a proper way is tougher than it seems due to the sensitivity of the structures. When a
structure overlapswith a different structure, unexpected events happen as flying structures, instantly
killed pigs and etc. Therefore, the measurements of sub-parts of the structure that is in the develop-
ment process should be taken into account.

Mergingmultipledesigns is abit trickydue to theproblemgivenabove: Overlapping structures. Thus,
the level designs should fit in the borders of the level and since doing thismanually is extremely time-
consuming, an algorithm to handle the stated progress is desired. However, there are multiple ways
of merging the given structures and not all of them are efficient in the sense of playability. One idea
is to place all the structures next to each other, making them stand on the same ground level, and
another idea is to use the free space available on the top side of the level, making the structures stand
at different heights. The use of free spaces offered the team a chance to come up with more detailed
level designs. Therefore, an algorithm was developed based on these preferences. The algorithm
works as follows:

1. As the input, use structures.

4

2. Get each structure’s total width and height.

(a) For the width, check the lowest and greatest x-coordinates and subtract them.

(b) For the height, check the lowest and greatest y-coordinates and subtract them.

3. The difference in structure’s width and height allow us to consider the structures as rectangles
where their width is the difference in width, height is the difference in height as calculated
earlier.

4. If the sum of areas (width x height) is lower than the area of the level, step on. Else, remove the
structures that is making the sum greater than the area of the level itself.

5. Place the first rectangle first, then look for a suitable one for the second and continue like this.
Since this is an NP-Complete problem, it is necessary to check every possibility one by one.

6. In a casewhere a rectangle cannot fit in anymore, goback to theprevious rectangle and change
its location. For a better understanding, check ”Backtracking Sudoku Solving Algorithm”[?].

7. When step 6 is done, place platforms for the ones that are placed above the ground level of the
level. This offers a chance for structures to stand above the ground level without falling down.

In conclusion, the rectangles are placed properly within the borders of the given level. In order to
finish the level,placing the pigs, birds and other stuff which will allow the player to play the designed
level.

Scalability is an important aspect to consider, in order tomaintain diversity in between the levels. Be-
ing able to scale the designs allow structures to come up in different sizes.When step 2 is considered,
we can have different sizes for the same exact structure, resulting in different values in areas.
The problem with scaling is that it is not possible to change the size of blocks that are used in the
structure, it is only possible to make them use more blocks to look bigger. The issue with this idea
is the chances of overlapping of blocks is quite high when their location are not recalculated prop-
erly and thus, the team should be able to provide enough space for blocks to get re-calculated their
locations. The algorithm to handle this task as follows:

1. Take a parameter as a multiplier.

2. Multiply the length of the structures with their sizes

3. Re-calculate the coordinatesof theblockswherenooverlappingwill happenasexplainedabove

Togive anexample, let two squares going tobeget x3bigger in sizeby addingadditional blocks
accordingly. Let their width and height is 1, and located on x1 = 0.5, x2 = 1.5 and y1,2 = 0.5,
indicating that they are not overlapping since 1.5 − 1 ≥ 1. When they get multiplied, their
width and height are now 3 but their coordinates are still the same, indicating that now they
are overlapping. Thus, we should be changing their coordinates. Take 1 from x1, resulting in
-0.5 and add 1 on x2, resulting in 2.5, resulting in a scenario where they do not overlap, the
maths holds as, 2.5− 3 ≥ −0.5.

4. Do this recursively for each structure.

5. Feed the merging algorithm with the current output.

5

In conclusion, sizing your structures can be quickly done with the given algorithm.

The signature character of the game, green pig should be placed in such a way that the level design
would look playable. After assembling the structures into levels, placingpigs is easily handledwith an
algorithm that works similarly to structure merging algorithm as explained above. In order to place
pigs, it is desired to check for available places for pigs and after spotting all the free spots for the pigs
to be placed, the algorithmgets terminated. However, the pigs should be placed in a reasonableway,
indicating that they cannot be placed fully randomly. To avoid such problems, set of rules should be
declared as input. The algorithm words as follows:

0 : Get the number o f a v a i l a b l e spot s based on the given c o n s t r a i n t s .
/ / To g i v e an example , i t i s i n t ended to have p i g s
/ / to be a t a d i s t a n c e o f a t l e a s t 5 u n i t s from each o t h e r .
/ / T h i s can be changed and manipu la ted e x t e n s i v e l y .

1 : fo r each a v a i l a b l e spot i n Leve l Des igns
2 : | i f c o n s t r a i n t s a l l ow cu r r en t spot == true :
3 : | | P l a ce a pig

| | / / Look f o r a v a i l a b l e s p o t s and
| | / / p l a c e your p i g s one by one .

4 : | e l se :
5 : | | pass

The last step of the level designs is to give the player some birds to play with. The number of birds
depends on the number of pigs and their type depends on the block types used in the level. To give
an example, yellow is great against the wood, black is great against stone. Thus, different birds are
desired for different types of blocks. The algorithm works as follows:

1. Get the merged level design with pigs.

2. Decide on the number of birds with somemultiplier on the number of pigs.

3. Decide on the type of birds depending on the amount of each block type.

After calling the birds with the given algorithm, the level is fully ready to be played. This process
is done recursively for every level. The randomisation on selecting structures is important to avoid
similarity between levels. A well crafted randomisation function is desired to provide diversity, to
achieve the intended effect, modulus equations/functions are useful in such scenarios.

6

Figure 3: Some of the preliminary structure designs.

4 Results

The international Angry Birds Level Generation competition thatwas held during the IEEEConference
onGames (24-27 August 2020) [2] consisted of four entries in total, with other teams fromuniversities
in England and Australia.

Each team had to generate 100 different levels. If the levels were too similar, points were subtracted.
The jury judged five levels from each team on three criteria: enjoyment, aesthetics, and challenge.
See Table 1 for the results per category. As shown in the right most column, team Amaru won the
challenge category! Amaru finished in second place in total, as shown in Table 2.

Table 1: Results per category.

Enjoyment Aesthetics Challenge
MelodyGen 70 points IratusAves+ 65 points Amaru 67 points
IratusAves+ 68 points MelodyGen 62 points IratusAves+ 52 points
Amaru 58 points Amaru 56 points MelodyGen 47 points

Table 2: Total results

Team Score
IratusAves+ 185 points
Amaru 181 points
MelodyGen 179 points
Naive 123 points

5 Discussion

Somemajor improvements can bemade to the Amaru-Generator. First of all, the generator only uses
pre-defined structures and does not actually ’generate’ structures itself. This limits the variety in the
levels. Therefore, possible innovations to the generator can include the generation of various sub-
structures such as towers of varying height andwidth. Creating these additional structures also adds
the features that the levels becomemore challenging and exciting.

7

Secondly, the position of the structures can be improved. Currently, the generator is not efficient be-
cause a rectangular no-spawn area is constructed around the structure. The size of the rectangular
box is determined by the maximumwidth and maximum height of the structure. Consequently, lots
of space is wasted and levels become stale and uneventful. Therefore, better levels can be generated
when the collision box around a structure is reduced to the (convex) structure itself, as more struc-
tures can be generated in the same level without colliding.

Another possible improvement is the pig placement. At themoment pigs can spawn on random po-
sitions, for instance on the inclined part of a pyramid, and die instantly, granting the player free points
while not utilising a single bird. The second problem is that toomany pigs are generated on the same
structure, meaning that a multitude of pigs can be destroyed by a single bird. This destructionmight
seem rewarding at first, but eventually the levels are too easy to complete. Therefore, the new pig-
placing code should try to solve these problems.

Further improvements in several aspects of this competition can be made. However, as a first time
team we believe that the knowledge obtained during this competition can be valuable for the next
Angry Birds Level Generation competition.

6 Conclusion

As a team of Serpentine we are proud to have won the challenge track of the 5th Angry Birds Level
Generation competition. The generator is not nearly complete towards our satisfaction, and can be
improved in many ways. We hope to take on the 6th competition of this series, bringing the knowl-
edgewegained fromthis competition. Combiningpre-defined structureshelpedus this timearound,
but we look forward to bring deep-learning into the level generation next time.

Workingon this projectwas a fun experience. Level Generation really forces another angle ongaming
AI’s, compared to the AI’s that play the games. We are proud to have helped set the first few steps for
future Serpentine teams.

Acknowledgements

This projectwas donewithin Serpentine, the student teamof the EindhovenUniversity ofTechnology
(TU/e) that competes in AI programming contests. We would like to thank the TU/e, as well as our
industry partners VBTI and Flowserve, for supporting our work.

References

[1] AIBIRDS COG 2020 Level Generation Competition. http://aibirds.org/
level-generation-competition.html Accessed on: 23 July 2020.

[2] IEEE Conference on Games. http://ieee-cog.org/2020/competitions_conference. Ac-
cessed on: 24 July 2020.

[3] Level Generation Competition - Basic Instructions. http://aibirds.org/
level-generation-competition/basic-instructions.html Accessed on: 26 July 2020.

[4] Team-Serpentine GitHub Repository: Amaru-Generator https://github.com/
TeamSerpentine/angry-birds-level-gen-2020

[5] Back-Tracking Sudoku Solving Algorithm, Geeksforgeeks. https://www.geeksforgeeks.org/
sudoku-backtracking-7/

8

http://aibirds.org/level-generation-competition.html
http://aibirds.org/level-generation-competition.html
http://ieee-cog.org/2020/competitions_conference
http://aibirds.org/level-generation-competition/basic-instructions.html
http://aibirds.org/level-generation-competition/basic-instructions.html
https://github.com/TeamSerpentine/angry-birds-level-gen-2020
https://github.com/TeamSerpentine/angry-birds-level-gen-2020
https://www.geeksforgeeks.org/sudoku-backtracking-7/
https://www.geeksforgeeks.org/sudoku-backtracking-7/

Appendix

Examples of exported levels by the Amaru Generator

Figure 4: Generated level with a train and table.

Figure 5: Generated level with a pyramid and windmill.

9

Figure 6: Generated level with a house and train.

Figure 7: Generated level with a ship.

10

	Abstract
	Introduction
	Strategy
	Baseline
	Universal structures
	Pigs
	Birds

	Implementation
	Results
	Discussion
	Conclusion
	Acknowledgements
	References
	Appendix

