
erpentine
Artificial Intelligence Association

Technical report

Battlecode 2021—M.A.R.S.

Dik van Genuchten, Koen Ligthart,
Max de Louw, Gijs Pennings
mars2021@serpentineai.nl

2020

mailto:mars2021@serpentineai.nl

Abstract

We, a team of students from Eindhoven University of Technology and Serpentine AI, created the
Ministry of Alien RattleSnakes bot (M.A.R.S.) to participate in the 2021 Battlecode competition by MIT.
An adaptive voting system was combined with thorough scouting and semi-centrally coordinated
attacks, with the goal of securing an earlymap-wide advantage. To this end, a communication protocol
was devised, as well as an algorithm to scout the complete map and attempt to achieve a uniform
presence. The bot’s performance could have been further improved by fine-tuning parameters (for
example, for managing the economy) and implementing more extensive communication between
units (to coordinate a global strategy, for instance). In the end, we finished 88 out of 559 teams in total.

Contents

1 Introduction 1

2 Environment 1

3 Strategy 2
3.1 Build order . 2
3.2 Communication . 3
3.3 Voting system . 3
3.4 Units . 3

3.4.1 Muckraker . 3
3.4.2 Politician . 3
3.4.3 Slanderer . 4

4 Implementation 4
4.1 Class structure . 4
4.2 Flag communication . 4
4.3 Muckraker dispersion . 5

5 Results 5
5.1 Strategy results . 5
5.2 Competition results . 6

6 Discussion 6
6.1 Economy . 6
6.2 EC improvements . 6
6.3 Scouting issues . 7
6.4 Vulnerable Slanderers . 7
6.5 Pathfinding . 7

7 Conclusion 8

8 Acknowledgments 9

1 Introduction

Battlecode is a yearly competition hosted by the Massachusetts Institute of Technology (MIT) [4]. Like
last year, we participated in this contest as a team from Serpentine [2, 3]. The competition is a game on
a 2D grid onwhich no real players compete, but rather botsmade by teams of four people from around
the world. In less than a month’s time between publication and final submission, teams must create
the best bot possible. Teams can challenge each other to so-called scrimmages, which determine
their ranking according to an Elo rating system. There are also official competitions with deadlines
throughout January in which all teams participate, the last of which decides the final ranking.

Every year, a theme is picked for Battlecode; this year the theme was politics. For this reason, units in
the game have been given roles fitting this theme. For example, the ‘Politician’unit has the ability to
convince other units. More details are provided in the next section.

In this report, we will first shortly describe the rules of this year’s game. Next, we will discuss the
strategy and implementation1 of the M.A.R.S. bot, the results including our ranking, and then possible
improvements to our final submission. Finally, the ideas covered are shortly reiterated.

2 Environment

Each game consists of at most 1500 rounds, which act as ticks for the code of both teams. After that,
the winner is determined. In each of these rounds a vote is called, and both teams can vote ‘influence’
(the currency of the game). The team that bids the largest amount wins that round’s vote. At the end
of the game, the team that received the most votes wins the game. Alternatively, when all of a team’s
robots are destroyed, it loses the game, even if not all 1500 rounds have passed. This is only a rough
overview; for specifics please refer to the official specification [5].

The map is a symmetric, rectangular, 2D grid on which headquarters are placed (details below). These
are either neutral or owned by one of the two players. Furthermore, each tile has a certain ‘passability’,
which indicates how fast units can move through it. Figure 3 shows an example of a map.

There are four types of robots, of which only the Enlightenment Center cannot move. All robots have
an attribute called ‘conviction’, which represents their health points. The robots can be summarized as
follows.

• Enlightenment Centers (ECs) produce units (at most one per turn) and are responsible for
bidding influence to win votes. They act as headquarters, but note that a team can ownmultiple
of them.

• Politicians have the ability to ‘empower’ in a certain radius, during which the Politician itself
is destroyed. Its conviction is distributed over all robots in its range: friendly robots will gain
conviction, while enemy robots will lose it. Afterwards, enemy ECs and Politicians with negative
conviction are converted to your team, while Muckrakers and Slanderers are simply destroyed.

• Slanderers generate influence every round for the first 50 of their existence, and convert to
Politicians after 300 rounds. They represent fake news reporters, and are indistinguishable from
Politicians to enemy Slanderers and Politicians.

• Muckrakers have the ability to ‘expose’ Slanderers of the other team, killing them.

Communication between robots is very limited, which is one of themain challenges of the competition.
Robots were only able to exchange information to nearby robots by changing their appearance in
the form of a colored flag, represented by a 24-bit integer. Robots can change their flag color at most
once per round, which severely limits the amount of data outbound messages can contain. ECs serve
a special role because they can read the flags of all robots, and because all robots can read theirs.

1The source code can be found on GitHub: https://github.com/TeamSerpentine.

1

https://github.com/TeamSerpentine

Figure 1: Images of each of the robot types in the game; from left to right: EC, Politician, Muckraker,
and Slanderer.

3 Strategy

3.1 Build order

The main strategy of the M.A.R.S. bot can be summarized by investigating the order in which an EC
builds its units. This is a prioritized list of possible units that an EC can build to do certain tasks. When
an EC detects enemy Muckrakers within its range, its highest priority will be to build Politicians to
defeat the opposing Muckrakers. When the visible area is clear of Muckrakers, the EC then proceeds to
build Slanderers until its income per round exceeds

√
round/2 + 8. Before Slanderers are built, it is

ensured that there are enough defensive Politicians to protect these Slanderers. Specifically, more
are built if less than 10 influence is invested into Politicians for each Slanderer. When an EC builds
a Politician, it gives either an offensive or a defensive label, which (partly) determines the behavior
of the Politician. In the early stage of the game (rounds 1-50), ECs make some Slanderers regardless
of the fact that there will not be any defensive Politicians to defend them, because the enemy will
likely not have that many Muckrakers. By building these Slanderers, a steady early supply of influence
income is generated.

After considering these building possibilities, if the EC knows locations of other neutral or enemy ECs,
it will try to make offensive Politicians and instruct them to head towards that location to gain control
of the EC. If none of the previous conditions are met, the EC will build either Muckrakers or offensive
Politicians. Offensive Politicians will only be built if the EC has an abundance of influence, specifically
more than 20

√
round + 4 · income + 200, where ‘income’ is the influence income per round from

Slanderers. This is to make sure that large amounts of influence do not remain unspent during the
course of the game. In practice, Muckrakers are built more often and also mainly in the earlier rounds
after the initial few Slanderers have been built. Table 1 provides a succinct overview.

Priority Condition Unit Function
1 Nearby enemy Muckrakers Defensive Politician Defeat enemy Muckrakers
2 Not enough Slanderer protection Defensive Politician Create preventive defense
3 Not enough income Slanderer Increase influence income
4 There are known attack targets Offensive Politician Attack the known EC
5 EC has expandable influence Offensive Politician Invest influence to prepare

for future attacks
6 (otherwise) Muckrakers Explore the map and expose

enemy Slanderers

Table 1: Build order of an EC.

Using this build order, the bot starts off by creating 4-5 Slanderers to generate income. Then, it creates
approximately 10 Muckrakers to look for map features such as ECs and map borders. Often, an early
target is found, which is then attacked. It was decided to spend around 10 influence on defensive
Politicians for each Slanderer, which turned out to be relatively little. Therefore, the bot is rather
offensive compared to other bots.

2

3.2 Communication

All robots actively use their flags to communicate information. For a unit, almost all communication is
between it and the EC that built it. A brief per-robot overview is provided below.

• Muckrakers encode the locations of ECs into their flags.

• Politicians instruct other Politicians that do not know an allied EC (e.g. when ‘their’ EC was
conquered by the enemy or the Politician was converted) with the ID of their own EC.

• Slanderers give off signals when they are threatened by enemy Muckrakers.

• ECs read off the flags of Slanderers when they are being threatened and use this information
to instruct defensive Politicians to go to that location. They also transmit the attack targets
obtained through the flags of Muckraker scouts.

3.3 Voting system

The goal of our voting strategy was to spend the least amount of influence in total, such that the
M.A.R.S. bot held the majority of the votes in the end. This involves carefully choosing which rounds
to skip, and howmuch to spend on other rounds. Hence, it is necessary to determine the minimum
amount of influence to outbid the opponent. In addition, enough influence needs to be kept so units
can be built.

Therefore, it was chosen to record how much influence was spent every round, as well as to keep
track of the amount of votes that were won in total. This way, it was possible to check whether the
last vote was won, in which case the M.A.R.S. bot bids less. When the previous vote was lost, it bids
more. Furthermore, a minimum of 3 influence was always voted, to ensure the vote was won when
the opponent withheld.

3.4 Units

3.4.1 Muckraker

Muckrakers had two purposes: taking out enemy Slanderers and scouting the map. Since enemy
Slanderers can be dealt with regardless of the Muckraker’s or Slanderer’s conviction, only Muckrakers
with 1 influence are created. If multiple enemy Slanderers are in range, the strongest is exposed. To
maximize the chances of finding and killing as many enemy Slanderers as possible, Muckrakers spread
out as far out and as uniformly as possible, the details of which can be found in section 4.3. This
behavior also made them prime subjects to scout the map, especially because of their high sensor
and detection radius. Using the flag to communicate with their ‘home’EC, Muckrakers send back the
location of the border and ECs of any affiliation.

3.4.2 Politician

The M.A.R.S. bot made a distinction between offensive and defensive Politicians. The main difference
between themwas which ‘orders’ from the EC they followed. Offensive Politicians were given enemy or
neutral ECs to target, while defensive Politicians received locations of approaching enemy Politicians
or Muckrakers.

Beforemoving, a Politician first always scans the area around it, regardless of its type. For each distance
away from the Politician, it would count the number of enemy units and determine the maximum
conviction of all enemy units within that range. Then, it would try to move towards the target, or, if no
target was known, randomly around its associated EC. If close to its target, it would determine the
smallest radius such that (1) all enemy units within it would be killed or (2) its target would be affected.
If such a radius was found, it would empower with that radius.

3

3.4.3 Slanderer

During the first 50 turns of their existence, Slanderers generate an income equal to⌊
(1
50 + 0.03e−0.001x) · x

⌋
every turn, with x being the initial investment made into the Slanderer. Due to the floor function
some values yield a higher return on investment than others. When needed according to the build
order, an EC builds themost expensive Slanderer from a pre-calculated list. This list consists of possible
influence investments with minimal loss to the floor function. It contained no values greater than
1000, since at that point the Slanderer costed more influence then it generated.

Much income is lost when enemy Muckrakers kill Slanderers. To prevent this as much as possible,
Slanderers try to flee fromMuckrakers. Slanderers wander towards the edges of the map and then
stick to those, running away from any enemy Muckraker within its radius.

4 Implementation

4.1 Class structure

Although each robot type has unique abilities, they share much common functionality as well. To
minimize code duplication, inheritance was used to reuse common functionality between robots.
Specifically, the functionality of each robot type was implemented in a subclass of the Robot or Unit
base class, where Unit itself is also an (abstract) subclass of Robot. The Robot base class contains
methods that are useful for all robot types (such as a utility method to return the closest of two
locations to the robot’s location), while the Unit base class extends this withmethods that were useful
for mobile robots (such as a utility method to try to move in a random direction). Next to utility methods,
the main purpose of these base classes (and specifically Robot) was to provide a common framework
for all robots. For example, it stores the RobotController object onwhich all actions (such asmoving
or using an ability) are executed.

Themain entry to the M.A.R.S. bot is the RobotPlayer that, depending on the robot’s type, created an
object of the correct concrete class and invoked the loop method. This mechanism can be classified
as the strategy design pattern [1]. The loop method is defined in the Robot base class, and calls the
abstract step method every turn. Concrete subclasses only needed to override this step method,
and can therefore abstract away from turns altogether.

4.2 Flag communication

The flags of all robots contain three dedicated bits that give information on what the type of message
is that they transmit via their flag. The bit layout of the 24-bit flags can be found in Figure 2. The rest of
the flag contains coordinates and possibly a Politician type.

The flag of the EC contains a special bit, called the ‘scanbit’, which is required for seamless communica-
tion from units to an EC. Because an EC might have built a lot of units, processing and reading all flags
can consume a lot of bytecode, which makes it infeasible to read all flags in a single round. Therefore,
this sometimes needs to be distributed over multiple rounds. By inverting the scanbit of the EC flag
after it has read all flag of all its units, the units can have a guarantee of whether their flag has been
read. This can be used by the units to determine the amount of rounds that they need to present their
flag with a message for the EC. This system is not required for messages destined to be read by units,
as those do not have to spend large amounts of bytecode on flag reading. These messages are just
shown as the flag for exactly one round.

The map boundary coordinates are not known by default, and can have large values. Therefore,
coordinates are encoded into 7 bits using modular arithmetic. Because it is known that the map is at

4

most 64 by 64 tiles large, units can deduce the absolute coordinates from coordinates modulo 128 by
comparing them with their current location.

Figure 2: The bit layout used for flag communication between robots. The two leftmost bits are unused.

4.3 Muckraker dispersion

To make Muckrakers spread out as uniformly as possible, they were modeled as charged particles in
an (electric) field. The specifics are discussed below. This results in emergent behavior, preventing any
part of the map from being missed. Note that the border was also considered ‘charged’. Using this
technique, many Muckrakers grouped together (which is the case at, for example, the EC that spawns
them) will automatically dissipate outwards. With enough Muckrakers and time, this will average out
to a global network of Muckrakers on the map. An example of this in the early stages of the game can
be seen in Figure 3.

At the start of every turn, every Muckraker scans all units around it. If a unit is a friendly Muckraker,
it is added to a list of ‘repellers’. Next, it is checked whether any map borders are inside the sensor
radius, which are then also added to the list. This is done by checking the four cardinal directions in
the following fashion. First, it is checked whether the tile furthest away, but still within sensor range,
is on the map. If so, there is no border in that direction. If not, all tiles between that tile and the
location of the Muckraker itself are checked linearly. The search is stopped as soon as the first map-tile
is encountered. Note that if, for example, a border has been found north of the Muckraker, the south
does not have to be checked. This is due to the minimummap size and maximumMuckraker sensor
radius.

This procedure yields a list of repellers, which can be compared to charged particles. Now, for each
possible direction tomove in (including CENTER, notmoving at all) the value of the‘field’is calculated at
that point, by summing the reciprocals of the distance of all ‘repellers’ to theMuckraker. The inspiration
for this was Coulomb’s law, namely

F = k
q1q2
r2

,

where r is the distance between two charged particles. Finally, the Muckraker tries to move in the
direction in which this sum is the smallest.

5 Results

5.1 Strategy results

Because the Battlecode scrimmaging platform does not provide clear bot performance statistics,
this section aims to give an insight into how specific strategies of the M.A.R.S. bot behaves in some
scenarios.

After creating a few initial Slanderers, the bot often manages to gain a significant amount of map
vision by scouting with Muckrakers which can be seen in Figure 3.

When the enemy bot does not create defensive units quickly and an enemy EC is known, the M.A.R.S.
bot usually manages to take over nearby enemy ECs. An example of this can be seen in Figure 4.

The offensive strategy does not always work. In Figure 5 it can be seen that the M.A.R.S. bot controls
5/6 ECs at round 165, but that the enemy team has a much larger income because they invested in

5

Figure 3: The M.A.R.S. bot (blue) scouting with Muckrakers at round 52. The highlighted Muckraker
communicates the location of the enemy EC to their own EC.

Slanderers in the top left corner. Because of the large amount of income that the red team has, they
were able to take over all other ECs with their Politicians at round 559.

5.2 Competition results

In the end the M.A.R.S. bot had an ELO-rating of 1313, ranking 88 out of 559 teams, and during the
International Qualifying Tournament lost its first match, bringing it in the loser bracket in which it won
3 rounds (out of 7), eventually losing against ‘Serpentine – Viper‘, the other team from Serpentine. The
recordings of all matches during the Qualifying tournament are available online2.

6 Discussion

6.1 Economy

While the build order as explained in Table 1 worked well generally, it lacked when resources were
sparse. For example, on some maps, especially if the opponent exposed Slanderers early, too little
Slanderers were produced, which significantly slowed down the economy and hampered production
of other units in the process. In extreme cases, long stretches of time were encountered where no
units were produced at all, which left the position extremely vulnerable.

6.2 EC improvements

A major limitation of the overall strategy was the fact that it was local to every EC individually. In
other words, there was no communication between ECs. Using flags, ECs could have ‘exchanged’plans,
resulting in a more coordinated response to threats or vulnerabilities in the enemy’s defense, in the
ideal scenario.

Another limitation concerning ECs was the reliance on the ‘home base’ for every unit. Almost all
communication between units went through the EC that spawned them. In practice this worked
well, until this EC was taken by the enemy, which left its associated units uncoordinated. This could
have been solved in two ways: (1) by exchanging strategy locally between units, without using the EC

2https://challonge.com/bc21_quals_b9d3af0/

6

https://challonge.com/bc21_quals_b9d3af0/

Figure 4: The M.A.R.S. bot (blue) attacking the right EC with politicians. The blue outline of a pawn
indicates that a blue Politician is empowering.

as an intermediary, and (2) by having units designating another EC as their ‘home base’, after losing
their previous to the enemy. Of course, (1) is limited by sensor range, but can still be useful in many
scenarios.

6.3 Scouting issues

The scouting strategy that was employed (as described in detail in section 4.3) resulted in a global, uni-
formly spread out network of Muckrakers, meaning no places (ECs or borders) were missed. However,
it was slow to start, which meant that opponents using a simpler but faster scouting method, such as
‘running’with one Muckraker in every one of the eight directions, would sometimes get the upper
hand by finding important landmarks earlier. For optimal results, both strategies could have been
combined into a hybrid to provide both fast initial exploration, as well as late-game control and vision.

Furthermore, when the Muckrakers had map control they did not communicate local danger (e.g.
enemy units) to the nearby friendly units. If the M.A.R.S. bot were to either neutralize the danger
(Politicians) or flee from the danger (Slanderers), it would have been stronger.

6.4 Vulnerable Slanderers

Although Muckrakers did scan for and report map borders, the ECs never used this information. For
instance, they could have been used for symmetry calculations, to determine locations of other ECs.
Perhaps more importantly, this information was not given to Slanderers, which could have used it to
determine better ‘hiding’ spots. In the latest M.A.R.S. bot, Slanderers would often ‘clump up’near the
ECs where they were created, or next to a border close to it. Once an enemy Muckraker had spotted
this group, it became too easy of a target. Using border coordinates, however, would potentially
allow Slanderers to hide near the boundary of the map, away from the action near the ECs. Another
improvement concerning Slanderers would have been to accompany each Slanderer by a ‘body guard’
of one or more (defensive) Politicians.

6.5 Pathfinding

Unfortunately, we did not come around to implementing a pathfinding algorithm. The M.A.R.S. bot
performed surprisingly well without it, partly due to the fact that this year’s Battlecode featured
no impenetrable obstacles (apart from other units). Furthermore, we implemented a simple utility
function3 that applied a basic strategy to maneuver around obstructing units. If, for example, a unit

3tryMovePreferred in the Unit class

7

Figure 5: The M.A.R.S. bot (blue) controlling 5/6 ECs at round 165. The blue outline of a pawn indicates
that a blue Politician is empowering.

needed to move north, it did this by not only trying to move north directly, but also north-east and
north-west. This very simple function proved useful in preventing deadlocks.

7 Conclusion

In the end, the M.A.R.S. bot is capable of generating influence, scouting and controlling the map, as
well as (semi-)organized attacks on the enemy ECs. The lack of decentralized communication was a
major weak point, since each channel of communication was limited to the EC and the respective unit
only. For example, when the Muckrakers had map control they did not communicate local danger to
nearby friendly units. Furthermore, most parameters remained static throughout the game and were
chosen arbitrarily, and thus could not be adapted to the environment. In summary, the individual
systems within the bot were good, but due to the lack of interaction between them, they were not
able to react optimally in a lot of cases. Given more time, these problems could have been solved, but
note that this time constraint is also a challenge of the competition.

8

8 Acknowledgments

This project was partly done within Serpentine, the student team of the Eindhoven University of
Technology (TU/e) that competes in AI programming contests. We would like to thank the TU/e, as
well as our industry partners VBTI and Flowserve for supporting our work. Furthermore, we want to
thank MIT for organizing this competition each year and opening it up for all students.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1st edition, 1994.

[2] D. Genuchten, B. Grooten, and M. Ronhaar. Noodles. Technical report, Serpentine, March 2020.

[3] C. Lepelaars, T. Tomilin, and P. Voors. SnakeEyes. Technical report, Serpentine, March 2020.

[4] MIT. Battlecode 2021. https://2021.battlecode.org.

[5] MIT. Battlecode 2021— specification. http://2021.battlecode.org/specs/specs.md.html.

9

https://vbti.nl/
https://www.flowserve.com/
https://2021.battlecode.org
http://2021.battlecode.org/specs/specs.md.html

	Introduction
	Environment
	Strategy
	Build order
	Communication
	Voting system
	Units
	Muckraker
	Politician
	Slanderer

	Implementation
	Class structure
	Flag communication
	Muckraker dispersion

	Results
	Strategy results
	Competition results

	Discussion
	Economy
	EC improvements
	Scouting issues
	Vulnerable Slanderers
	Pathfinding

	Conclusion
	Acknowledgments

